可自愈合的尼龙弹性体材料

可自愈合的尼龙弹性体材料

 

Tough Self‐Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks

 

Abstract

 

Self‐healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to “dry” elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid “dry” elastomer that is very tough with fracture energy 13500 Jm−2 comparable to that of natural rubber. Moreover, the elastomer can self‐heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self‐healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self‐healing polymers of practical usage.

 

暂无优惠 永久皇帝免费

已有1人支付

干冰工作室-TPE Solution:持续专注于热可塑性高分子弹性体应用技术的开发与推广服务13年(+)。代表作品有TPR高耐磨脚轮、TPE苹果线(耳机线、USB数据线)、TPE无卤阻燃电线(OPPO/vivo/小米...)、密封条、耐刮白TPR手柄、防毒面罩、PA包胶料...
弹性体技术分享站 » 可自愈合的尼龙弹性体材料

发表评论

弹性体技术分享站:持续专注于高分子弹性体化学(TPE TPR TPV TPU TPEE…)应用技术的开发与推广!

我们的优势:高分子材料工程专业技术背景,服务于弹性体行业时间超13年(+) Autobiography—弹性体杨工传